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Abstract This paper presents homogeneous clusters of

patients, identified in the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) data population of 317

females and 342 males, described by a total of 243 bio-

logical and clinical descriptors. Clustering was performed

with a novel methodology, which supports identification of

patient subpopulations that are homogeneous regarding

both clinical and biological descriptors. Properties of the

constructed clusters clearly demonstrate the differences

between female and male Alzheimer’s disease patient

groups. The major difference is the existence of two male

subpopulations with unexpected values of intracerebral and

whole brain volumes.

Keywords Alzheimer’s disease � Clustering �
Female and male subpopulations

1 Introduction

A key issue in understanding of the Alzheimer’s disease

(AD) is the recognition of relations between clinical

characteristics of patients and their biological properties

that can be objectively measured. Some recent studies [1]

suggest the existence of different AD subtypes, and it may

be expected that the identification of relevant relations is

potentially easier for AD subtypes than for the complete

AD population. Additionally, segmentation of the AD

population may enable comparative evaluation of subpop-

ulations of AD patients, potentially leading to a better

understanding of their distinguishing properties.

An important characteristic of the proposed approach

applied in this work is that clustering is performed sepa-

rately for male and female populations, and that the gen-

erated patient clusters are homogeneous both in terms of

clinical and biological properties. The results are relevant

for identification of gender-specific properties of patients

that have problems with dementia. Also, the results clearly

support the conclusion that there are significant gender-

related differences among AD patients [2].

Development of our clustering methodology has been

motivated by the recently introduced approaches of

redescription mining [3] and multi-view learning [4]. We give

a detailed presentation of the proposed multi-layer clustering

algorithm (MLC), since we believe that this methodology can

be useful also in other medical applications. The algorithm is

implemented as a web application and is easy to use. It is

publicly available at http://rr.irb.hr/MLC/.
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Applications of data clustering are very good examples

of interactive data mining approaches [5] because evalua-

tion of the quality of obtained clusters is only possible in

the context of domain expert’s expectations [6]. Addi-

tionally, an important issue is that application of different

clustering algorithms as well as different ways of data

representation and preparation may result in substantially

different clustering results.

Unfortunately, it was not possible to include experts

participating in the ADNI into the analysis loop of our

clustering of the ADNI data. Expert evaluation of the

results solely with the help of publicly available data and

their descriptions is difficult because some data or their

aspects, especially anamnestic data and data collection

procedures, are not public due to patient privacy protection

issues. Nevertheless, we still used human-in-the-loop

approach that concentrated on the identification of sub-

populations that are large and interpretable with existing

domain knowledge. As a result—besides some clusters that

are in agreement with the existing domain knowledge—we

have surprisingly identified some additional clusters that

are hard to evaluate. These clusters are currently consid-

ered as potentially interesting hypotheses; their future

verification on independent data might lead to new scien-

tific insights and potentially useful medical knowledge.

The rest of the paper starts with a summary of the

related work in Sect. 2 and the presentation of the data

used in the analysis in Sect. 3. Section 4 describes the

novel clustering methodology, including a small illustrative

example. Section 5 presents the constructed clusters of

ADNI patients. The clusters are described in terms of sta-

tistical properties of patients included into each cluster,

together with the complete list of identification numbers of

corresponding patients. In this way, the interested reader

may access additional information about specific patients

from the ADNI database. Medical relevance of the results,

especially a possible interpretation of the unexpected

clusters is discussed in Sect. 6. The quality of best

biomarkers for the constructed clusters is analyzed in

Sect. 7. Section 8 concludes the paper.

2 Related work

The approaches suitable for the identification of relations

between clinical and biological properties of AD patients

can be grouped into three groups. In the first one, we have

statistical approaches that typically test the significance of

differences between properties of AD patients and patients

from the control group. Published results obtained with

these methods [7, 8] clearly demonstrate the existence of

relations between the values obtained by PET imaging and

the clinical diagnosis. The problem with this approach is

that the identified relations are non-specific and that the

severity of the disease is not strongly correlated with the

measured values. The major problem seems to be that the

differences in biological descriptors may be a consequence

of various physiological processes and that changes of both

clinical and biological variables may be a normal process

in the elderly population.

Other approaches are based on data mining methods.

The second group comprises supervised machine learning

techniques used for identification of potentially complex

relations between biological properties that strongly cor-

relate with the AD diagnosis [9]. This is typically a very

powerful approach but in the AD domain it is confronted

with the problem that there exist various clinical scales of

dementia but none of them can be regarded as completely

reliable for determining the AD diagnosis.

The third group comprises unsupervised clustering

approaches, which are very attractive because they do not

require explicit definition of the target class and the

availability of a control group of patients. The results often

enable novel insights into the analyzed data. A good

example is the identification of pathological subtypes of the

Alzheimer’s disease presented in one large group charac-

terized by the distribution of senile plaque restricted to a

small number of brain regions, and a smaller group with

about 15 % of patients in which the lesions were more

widely distributed [10]. A general problem of clustering is

instability of the results that significantly depend on the

used methodology and the parameters of the algorithm

selected by the user [11]. Recently, it has been demon-

strated that the quality of results can be significantly

improved when more than one layer of input data are used

[3, 4]. The distinguishing property of the multi-layer

clustering algorithm presented in this work is that—in

contrast to redescription mining [3]—our algorithm does

not construct descriptions of subpopulations and that—in

contrast to multi-view learning [4]—it does not require

statistical independence of input data layers. Additionally,

the major advantage of the multi-layer clustering algorithm

is that no explicit definition of the distance measure among

instances (patients) is necessary and that no explicit defi-

nition of the number or size of the resulting clusters is

expected from the user [12].

The first experiments with the application of the multi-

layer clustering in the AD domain have been performed on

916 patients from the ADNI database described by 10

biological and 23 clinical descriptors [13]. The results

demonstrated the existence of an AD subpopulation with a

surprising property of the increased intracerebral and

whole brain volumes. The experiments have been repeated

on a set of 659 ADNI patients described with 56 biological

and 187 clinical properties collected during the baseline

evaluation [14]. In spite of different datasets (though some
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of the patients and some of the features were overlapping),

again a cluster of male patients has been identified with the

same surprising property of increased intracerebral and

whole brain volumes. This work is an extension of these

experiments on the latter dataset but with an improved

clustering algorithm. The improvement resulted in identi-

fication of an additional cluster of male patients with no

dementia, construction of significantly larger clusters, and

elimination of obvious outliers that have been present in

previous subpopulations. The basic conclusions of this

work are the same as those in [14] but the statistical sig-

nificance of the results is higher.

3 Data

All experiments were performed on the data from the Alz-

heimer’s Disease Neuroimaging Initiative (ADNI) data-

base.1 The total number of patients initially included was

1736 from all ADNI stages of study (i.e., ADNI-1, ADNI-

GO, and ADNI-2). In order to achieve the broadest clinical

dataset, some exams used only in ADNI-2 were used.

Keeping only observations for which nomissing values were

present led to a reduction in the number of observations from

1736 to 659. This subset includes 317 female and 342 male

patients. The patients are described by 147 clinical variables,

41 laboratory variables, 40 symptoms, and 15 biological

measurements. Clinical variables include Alzheimer’s Dis-

ease Assessment Scale (ADAS13), Mini Mental State

Examination (MMSE), Rey Auditory Verbal Learning Test

(RAVLT immediate, learning, forgetting, percentage of

forgetting), Functional Assessment Questionnaire (FAQ),

Montreal Cognitive Assessment (MOCA), and Everyday

Cognition, which are cognitive functions questionnaire filled

out by patients (ECogPt) and their study partners (ECogSP)

(Memory, Language, Visuospatial Abilities, Planning,

Organization, Divided Attention, and the Total score),

Neuropsychiatric Inventory Questionnaire, Modified

Hachinski Ischemia Scale, and Geriatric Depression Scale.

Examples of laboratory variables are red blood cells and total

bilirubin, while examples of symptoms are palpitations and

dizziness. Biological measurements include ABETA pep-

tides, TAU and PTAU proteins, the APOE-related genetic

variations (APGEN1 genotype allele 1, APGEN2 genotype

allele 2), PET imaging results FDG-PET and AV45, MRI

volumetric data [Ventricles, Hippocampus, Whole Brain,

Entorhinal, Fusiform gyrus, Middle temporal gyrus (Mid-

Temp) and intracerebral volume (ICV)].

For the evaluation of the consistency of constructed

clusters, we use global clinical dementia rating score which

is interpreted as clinically normal CN (value 0), mild

cognitive impairment MCI (value 0.5) and Alzheimer’s

disease AD (value 1) diagnosis for the patient. The clinical

dementia rating score is different from the five level ADNI

patient diagnosis (cognitive normal, significant memory

concern, early mild cognitive impairment, late mild cog-

nitive impairment, and AD), but the agreement between the

two scales is very high.

In clustering, the symmetry and additivity of the variables

prove to be important. Therefore, in data preprocessing,

some of the variables were transformed to achieve reduced

skewness. The transformation function was selected

according to the type of data measured by the variable, the

level of skewness, and the most adequate function from a set

of possible functions, which include log x, logit x, 1/x, etc.

4 Multi-layer clustering

In a typical machine learning setting, we have a set of

examples E that are described by a set of attributes A, and

from these examples we try to induce or learn a model that

would generalize the examples. In some domains, the set of

attributes may be partitioned in two or more disjoint sub-

sets (layers) according to some criteria, such as the phys-

ical meaning of the attributes or the way data on specific

attributes have been collected. For example, in the Alz-

heimer’s disease domain, the first layer can be the labo-

ratory data, while the second layer can be the clinical data.

In some other domain, different layers may contain the

same attributes but collected in various time periods. The

goal of multi-layer clustering is to construct clusters that

are as large as possible and coherent in all the layers. This

section describes the proposed clustering methodology by

first describing single-layer clustering, and then general-

izing it to multi-layer clustering.

4.1 Single-layer clustering

Let us assume a basic clustering task in which we have

only one layer of attributes. The proposed methodology

consists of two steps. In the first step, we compute the so-

called example similarity table. This is an N 9 N sym-

metric matrix, where N is the number of examples. All its

values are in the range 0.0–1.0. A large value at a position

(i, j), i 6¼ j, denotes a large similarity between examples

i and j. In the second step, we use the table in order to

construct clusters.

1 The ADNI was launched in 2003 by the National Institute on Aging

(NIA), the National Institute of Biomedical Imaging and Bioengi-

neering (NIBIB), the Food and Drug Administration (FDA), private

pharmaceutical companies and non-profit organizations. The Princi-

pal Investigator of this initiative is Michael W. Weiner, MD, VA

Medical Center and University of California, San Francisco. More

information can be found at http://www.adni-info.org and http://adni.

loni.usc.edu.
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4.1.1 Example similarity table (EST)

We start from the original set of N examples described by

nominal and numerical attributes that may contain

unknown values. An artificial classification problem is

formulated as follows: the examples from the original set

constitute the positive examples, while the negative

examples are artificially constructed by shuffling the values

of the original examples. The shuffling is performed at the

level of attributes so that we randomly mix values among

the examples. The values remain within the same attribute

as in the original set of examples. As a result, we have the

same values in positive and negative examples, but in

negative examples we have randomized connections

between the attribute values. For small problems with up to

200 examples, we typically construct four times as many

negative examples as in the original (positive) example set,

while for larger domains we construct the same number of

positive and negative examples.

Next, we use a supervised machine learning algorithm to

build a predictive model that is used to discriminate

between the positive examples (the original examples) and

the negative examples (the artificially constructed exam-

ples with shuffled attribute values). The goal of learning is

not the predictive model itself, but the information on the

similarity of examples. Machine learning approaches with

which we can determine if some examples are classified in

the same way are appropriate for this task. For example, in

decision tree learning this means that examples end in the

same leaf node, while in decision rule learning this means

that examples are covered by the same rule.

To estimate the similarity of examples, we follow an

ensemble learning approach, where statistics are computed

over a large set of classifiers. Additionally, a necessary

condition for a good similarity estimation is that the clas-

sifiers are as diverse as possible and that each of the

classifiers is better than random. All these conditions are

satisfied, e.g., by the Random Forest [15, 16] and the

Random Rules [17] algorithms. We use the latter approach

in which we typically construct about 50,000 rules for each

EST computation.

The similarity of examples is determined so that for

each pair of examples, we count how many rules cover

both examples. The EST presents the statistics for the

positive examples (original set of examples). A pair of

similar examples will be covered by many rules, while no

rules or a very small number of rules will cover pairs that

are very different in terms of their attribute values. Final

EST values are computed by normalizing the counts by the

largest detected value.

Table 1 presents an example of EST for a set of 6

examples. In the upper part is the table with counts of rules

covering pairs of examples. The diagonal elements

represent total counts of rules covering each example. By

the normalization of this table, we obtain the EST that is

presented in the lower part of the table. It can be noticed

that we have two very similar examples (ex2 and ex5),

three similar examples (ex1, ex3, and ex4), and one very

different example (ex6). The maximal value in the upper

table is 97 and EST values in the lower table are obtained

through normalization with this value.

4.1.2 Clustering-related variability (CRV) score

The second step in the process of clustering starts from the

EST. The goal is to identify subsets of examples that can

reduce the variability of EST values. For this purpose, we

define the so-called clustering-related variability (CRV)

score. This is the basic measure which guides the search

during iterative bottom-up clustering. CRV score is not a

simple similarity measure. It is defined for a single

example, but it depends also on other examples that this

example is clustered with. A cluster may consist of a single

example.

Clustering-related variability, for example i is denoted

as CRVi. It is the sum of squared deviations of EST values

in row i (Xi ¼ fxi;j; j 2 f1; . . .; i� 1; iþ 1; . . .;Ngg) but so
that CRVi is computed as a sum of two components:

CRVi ¼ CRVi;wc þ CRVi;oc.

Within cluster value

CRVi;wc ¼
X

j2C
ðxi;j � xmean;wcÞ2

is computed as a sum over columns j of row i (j 6¼ i)

corresponding to examples included in the same cluster

C with example i. In this expression, xmean;wc is the mean

value of all xi;j in the cluster. When there is only one

Table 1 An illustrative example of a similarity table (EST)

ex1 ex2 ex3 ex4 ex5 ex6

ex1 38 0 27 28 0 7

ex2 0 97 3 1 97 3

ex3 27 3 47 16 3 1

ex4 28 1 16 45 1 4

ex5 0 97 3 1 97 3

ex6 7 3 1 4 3 39

ex1 ex2 ex3 ex4 ex5 ex6

ex1 0.39 0.0 0.28 0.29 0.0 0.07

ex2 0.0 1.0 0.03 0.01 1.0 0.03

ex3 0.28 0.03 0.48 0.16 0.03 0.01

ex4 0.29 0.01 0.16 0.46 0.01 0.04

ex5 0.0 1.0 0.03 0.01 1.0 0.03

ex6 0.07 0.03 0.01 0.04 0.03 0.40
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example in a cluster then CRVi;wc ¼ 0 because there are no

other examples in the cluster that are different from

i. When there are two examples in a cluster then it equals

zero because we compute the sum only for one value xi;j
and that is equal to xmean;wc ¼ xi;j.

Outside cluster value

CRVi;oc ¼
X

j 62C
ðxi;j � xmean;ocÞ2

is defined in the same way as CRVi;wc but for xi;j values of

row i not included in cluster C. The xmean;oc is the mean

value of the EST element values not included in the cluster

and it is different from the xmean;wc used to compute

CRVi;wc. When example i is the only example in a cluster

then CRVi;oc is the sum of squared deviations for all the

values in row i except for xi;i.

The final CRV value of cluster C is computed as the sum

of all the CRV values for the examples contained in the

cluster:

CRVC ¼
X

i2C
CRVi:

4.1.3 Illustrative example

We use the data from the EST presented in Table 1 to

compute the CRV value for the example (ex1) contained in

various clusters C. We present three cases: when cluster

C contains only example ex1, when ex1 is clustered with

ex3, and, finally, when it is clustered with both ex3 and ex4.

By visual inspection of the EST, we can immediately

notice some similarity among examples fex1; ex3; ex4g.
The goal is to demonstrate the CRV value computation to

show that for the same row ex1, we can get different

CRVex1 values depending on which example ex1 is clus-

tered with, and finally to show how CRVex1 values decrease

when similar examples are added into cluster C.

If ex1 is the only example in a cluster C ¼ fex1g:
CRVex1;wc ¼ 0

CRVex1;oc ¼ ð0:0� 0:13Þ2 þ ð0:28� 0:13Þ2þ
ð0:29� 0:13Þ2 þ ð0:0� 0:13Þ2 þ ð0:07� 0:13Þ2 ¼ 0:08

CRVex1 ¼ 0:08

When we add a new element (ex3) to this cluster

C ¼ fex1; ex3g:
CRVex1;wc ¼ ð0:28� 0:28Þ2 ¼ 0:00

CRVex1;oc ¼ ð0:0� 0:09Þ2 þ ð0:29� 0:09Þ2þ
ð0:0� 0:09Þ2 þ ð0:07� 0:09Þ2 ¼ 0:06

CRVex1 ¼ 0:06

Finally, when we have C ¼ fex1; ex3; ex4g:
CRVex1;wc ¼ ð0:28� 0:285Þ2 þ ð0:29� 0:285Þ2 ¼ 0:00

CRVex1;oc ¼ ð0:0� 0:02Þ2 þ ð0:0� 0:02Þ2þ
ð0:07� 0:02Þ2 ¼ 0:00

CRVex1 ¼ 0:00

4.1.4 Single-layer algorithm

Algorithm 1 is the bottom-up clustering algorithm that

merges the most similar examples in respect of the CRV

score, and produces a hierarchy of clusters. It may be

noticed that in contrast to most other clustering algorithms,

it has a well-defined stopping criterion. The process stops

when further merging does not result in the reduction of

example variability measured by the CRV score, and this

way the algorithm automatically determines the optimal

number of clusters. As a consequence, some examples may

stay non-clustered (more precisely, they remain as clusters

consisting of only one example).

x y
CRVx CRVi x
CRVy CRVi y
CRVxy CRVi x y
DIFF = CRVx+CRVy − CRVxy

x y

x y

4.2 Multi-layer clustering

The basic lesson learned from redescription mining and

multi-view clustering is that the reliability of clustering can

be significantly improved by a requirement that the result

should be confirmed in two or more attribute layers. The

approach for clustering based on example similarity, pre-

sented in the previous section for a single-layer case, can

be easily extended to clustering in a multi-layer case.

If we have more than one attribute layer then for each of

them we compute the example similarity table indepen-

dently. For each layer, we have to construct its own arti-

ficial classification problem and execute the supervised

learning process in order to determine the similarity of

examples. Regardless of the number and type of attributes

in different layers, the tables will be always matrices of

dimension N 9 N. The reason is that by definition, we

have the same set of N examples in all the layers. After

computing the similarity tables, the second step of the

clustering process is executed.
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x y
l

CRVlx CRV x l
CRVly CRV y l
CRVlxy CRV {x ∪ y} l
DIFFl = CRVlx+CRVly − CRVlxy

x y DIFF = minl DIFFl

x y

x y

Conceptually, multi-layer clustering presented in Algo-

rithm 2 is identical to the single-layer approach. The main

difference is that merging of two clusters is possible only if

there is variability reduction in all the layers. For each

possible pair of clusters, we have to compute potential

variability reduction for all attribute layers and to select the

smallest value for this pair. If this minimal value is posi-

tive, then merging of clusters enables variability reduction

in all the layers. When there are more pairs with positive

minimal value, we chose the pair with the largest minimal

value and merge these clusters in the current iteration.

When we do clustering in two or more layers, we have a

conjunction of necessary conditions for merging two

clusters. A typical consequence is that resulting clusters are

smaller than in the case of a single-layer clustering.

5 Clustering results

Clustering was performed independently for each of the

two subpopulations of 317 female and 342 male patients. A

series of experiments was performed so that different parts

of available information about patients were used as input

layers. The presented results were obtained by using bio-

logical measurements and laboratory data (in total 56

descriptors) as the first layer, and symptoms and clinical

data (in total 187 descriptors) as the second layer.

All experiments produced a large number of clusters.

For the described setting with two layers for the female

population, there are 19 clusters with 4 or more patients,

nine of which have more than 10 patients. The result for the

male population is very similar: 21 clusters with 4 or more

patients, 10 of them with more than 10 patients. Five lar-

gest clusters for each population are listed in Table 2. They

include a bit more than a half of patients from each

population.

Table 3 presents the clinical and biological properties

for six clusters that include more than 30 patients. For the

female population, we have one large cluster F1 in which

the majority of patients have significant problems with

dementia. Out of the 47 included patients, 19 have the

Clinical Dementia rating score equal to 1 (in this work

interpreted as AD), while 28 have been diagnosed as mild

cognitive impairment (CD score of 0.5). In the entire

dataset, there are 22 patients with the score value equal to

1, and 19 of them are included into this cluster. The clinical

properties of these patients include high ADAS13, FAQ,

and MMSE scores, and all types of cognitive problems.

The biological properties of these patients are also typical

for AD patients, e.g., low FDG values, significantly

decreased Entorhinal volume, and high AV45 values. A

statistical comparison with the population of all 145 female

patients with cognitive normal status in the dataset has

been used to identify the most distinguishing biological

properties of the cluster. The last column of Table 3 pre-

sents the most significant properties in terms of the highest

z-score values of the Mann-Whitney test. The values are

very high denoting that differences between cognitive

normal patients and those included in the cluster are very

significant.2

Cluster F0 constructed for the female population

includes 64 patients that are typical patients with no sig-

nificant problems with dementia. Although this is the lar-

gest cluster constructed for the female population, it is

relatively small if we take into account that there are 145

Table 2 List of five largest clusters for female and male populations

Number of patients Distribution of CD rating score Cluster ID

AD MCI CN

Females

64 0 5 59 F0

47 19 27 1 F1

22 0 20 2 –

20 0 0 20 –

19 3 15 1 –

Males

42 0 12 30 M0A

40 0 8 32 M0B

38 18 20 0 M1

31 13 18 0 M2

27 0 26 1 –

2 A value of a z score higher than 3.29 denotes statistical significance

of P\ 0.001.
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cognitive normal female patients in the whole dataset. A

possible explanation is that among ADNI patients diag-

nosed as cognitive normal there are also patients that are

not completely healthy, but their subjective or objective

problems are either not severe enough or their problems are

in discrepancy with typical clinical profiles.

The bottom part of Table 3 presents clusters for the male

population. There are two clusters of patients with signif-

icant cognitive problems (M1 and M2) and two clusters of

patients with mild or no dementia (M0A and M0B). Cluster

M0A is similar in terms of the properties of the female

cluster F0 both regarding its size and the detected biolog-

ical properties. It is interesting to notice that cluster M0A

includes even 12 patients that have CD rating score equal

to 0.5 while in the female cluster there are only five such

patients. In contrast to cluster M0A, cluster M0B is char-

acterized by decreased ICV values.

There are two clusters of male patients that have sig-

nificant problems with dementia. In the first one (M1) there

are 38 patients, 18 of them with the CD score equal to 1

and the rest with the score equal to 0.5. In the second

cluster (M2) there are 31 patients, 13 of them with CD

score equal to 1. In the male population, there are a total of

36 patients with AD status (CD value equal to 1). An

interesting observation is that two male clusters M1 and

M2 together include 31 out of 36 (86 %) male patients with

CD score equal to 1 in the dataset, while the single female

cluster F1 includes almost identical percentage of such

patients (19 out of 22, i.e., 86 %). Table 4 lists the ADNI

IDs of patients included into clusters F0, F1, M0A, M0B,

M1, and M2.

6 Analysis of results

A significant difference between male and female popula-

tions of patients can be noticed. For the female population

there are two clusters while for the male population there

are four clusters, two for patients with significant problems

with dementia and two for patients with mild or no

dementia. By inspecting the properties characterizing

patients in these clusters (see Table 3), one can notice

especially interesting differences between patients in

clusters M1 and M2. Biological and clinical properties that

most significantly differentiate these two clusters according

to the Mann-Whitney test are listed in Table 5.

Cluster M2 deserves special attention due to the fact that

average values of ICV and whole brain volume for patients

in M2 are higher than average values for the set of all 124

cognitive normal male patients. The result is unexpected

because cognitive problems are typically related with the

atrophy of human brain [18]. The differences are statisti-

cally significant; average ICV values are 1,577 and 1,774

for cognitive normal and M2 patients, respectively ( z score

6.54, P\0.001) (see Table 3), while average whole brain

volumes are 1109 and 1167 ( z score 3.08, P \ 0.01).3

When comparing patients in cluster M2 with patients in

M1, who also have typical AD symptoms but, as expected,

decreased ICV and whole brain volumes, the differences

are even more statistically significant (see Table 5).

Table 3 Short descriptions for the largest clusters

Cluster

ID

Clinical status Biological properties

(with z score versus

cognitive normal)

Clusters for female patients

F1 Significant cognitive problems

(high ADAS13, high FAQ, high

MMSE)

Low FDG 9.29

Low entorhinal 8.74

High AV45 8.36

Low

hippocampus

8.33

Low MidTemp 7.52

Low fusiform 7.13

High TAU 7.12

F0 Mild or no dementia High FDG 6.05

High

hippocampus

2.86

High whole

brain

2.85

Clusters for male patients

M1 Significant cognitive problems Low FDG 8.23

Low

hippocampus

7.70

Low entorhinal 7.09

Low MidTemp 6.33

Low whole

brain

6.23

High TAU 5.57

M2 Significant cognitive problems Low FDG 7.83

High ICV 6.54

High ventricles 5.70

Low

hippocampus

5.60

Low ABETA 5.80

M0A Mild or no dementia High FDG 4.98

High ICV 4.00

High whole

brain

3.31

M0B Mild or no dementia Low ICV 4.83

Low whole

brain

3.74

3 Actual absolute values for ICV and whole brain volumes are 1000

times larger.
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The importance of the discovery is manifold. First, it

indicates gender-specific differences because such a cluster

with similar properties is not detected in the female pop-

ulation. Second, for a domain in which biological processes

with opposite manifestations (decrease and increase of

ICV) may result in similar clinical consequences (demen-

tia), segmentation of the patient population is suggested

before other analyses aimed at the discovery of relations

between biological and clinical properties of patients are

performed. Finally, the result is intriguing in respect of its

biological and medical interpretation.

It is possible that the increased ICV and whole brain

volumes are a consequence of an artifact in data collection

procedures, feature extraction from images, or data post-

processing (normalization). The assumption may stimulate

careful evaluation of the ADNI data, especially for patients

in cluster M2. But the result may also suggest the existence

of a different biological pathway for the male population,

resulting in serious dementia problems that are often

diagnosed as Alzheimer’s disease but with less expressed

clinical symptoms (see bottom part of Table 5). In the

scientific literature, we have found no support for such

explanation except that the study devoted to gender-related

differences [2] concluded that ‘‘AD pathology is more

likely to be clinically expressed as dementia in women than

in men.’’

Figure 1 illustrates the differences among patients in

clusters M1 and M2 and cognitive normal male patients

in respect of ICV values and ADAS13 scores. It can be

noticed that male cluster M0A can be compared with

female cluster F0 because they share common properties:

increased ICV and decreased ADAS13 score when

compared to mean values of all cognitive normal male

and female patients, respectively. Cluster M0B is again a

surprise because it represents a group of patients which

also has improved (lower) ADAS13 values but with

decreased values of ICV. The differences between

cluster M0B and the complete cognitive normal male

patients are not statistically significant but the result

additionally stresses differences between male and

female populations and suggests that the differences

between clusters M1 and M2 that are valid for AD

patients are to some extent present also in the cognitive

normal population.

Table 4 Lists of ADNI patients

included into clusters from

Table 3

For clusters F1, M1, and M2,

RIDs of patients with the

diagnosis of the Alzheimer’s

disease (CDGLOBAL value

equal to 1) are typeset in bold,

while for clusters F0, M0A, and

M0B, patients with the MCI

diagnosis (CDGLOBAL value

equal to 0.5) are typeset in bold

Cluster F1

4024 4030 4034 4058 4079 4201 4209 4211 4252 4324 4353 4402 4415 4458

4477 4500 4502 4542 4568 4591 4609 4660 4715 4796 4815 4845 4894 4897

4902 4904 4905 4906 4909 4910 4912 4918 4982 4984 4990 4997 5006 5015

5019 5031 5063 5119 5184

Cluster M1

4009 4095 4096 4131 4152 4171 4195 4215 4240 4307 4475 4494 4501 4526

4625 4672 4686 4689 4707 4718 4770 4774 4802 4827 4857 4867 4936 4958

4964 4968 4980 4994 5017 5027 5067 5165 5224 5241

Cluster M2

4136 4153 4192 4223 4243 4258 4346 4423 4515 4546 4549 4595 4615 4661

4692 4733 4859 4863 4924 4943 4971 4974 5012 5037 5058 5059 5070 5071

5095 5208 5210

Cluster F0

4028 4066 4076 4084 4155 4184 4200 4288 4320 4335 4340 4349 4357 4362

4399 4401 4422 4441 4446 4483 4496 4508 4545 4553 4555 4598 4607 4624

4643 4644 4645 4843 4872 4874 4878 4900 4952 5093 5102 5118 5127 5129

5132 5154 5158 5159 5169 5175 5185 5193 5198 5203 5214 5230 5235 5240

5261 5272 5277 5287 5288 5289 5290 5292

Cluster M0A

4029 4037 4043 4082 4164 4177 4179 4210 4225 4229 4257 4274 4309 4332

4339 4345 4352 4389 4427 4429 4431 4453 4485 4516 4520 4556 4604 4632

4649 4739 4844 4921 4926 4941 4966 5113 5131 5141 5157 5242 5271 5296

Cluster M0B

4086 4090 4103 4158 4168 4176 4251 4292 4369 4391 4400 4443 4464 4469

4491 4577 4579 4601 4620 4762 4799 4813 4862 4877 5082 5083 5109 5130

5135 5147 5150 5167 5212 5243 5248 5250 5266 5278 5279 5294
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7 Biological markers

One of the stated ADNI goals is to improve clinical trial

design through detection of biomarkers that could be used

as approximate measures of the severity of dementia. This

is known as a difficult task that is still far from a satis-

factory solution. If the constructed clusters are really more

homogeneous than the complete population, then it may be

expected that identification of dementia disease markers

should be an easier task for each cluster separately than it is

for the complete population.

Table 6 presents the most correlated pairs of one bio-

logical and one clinical property that can be identified for

the complete population, for the female population only,

for the male population only, and finally for clusters F1,

M1, and M2. The most correlated pairs are identified with

the Spearman rank-order correlation coefficient rs that is

computed for all possible pairs of properties. The result

confirms that for some constructed clusters there exist more

strongly correlated biological–clinical relations.4 It must be

noted that in spite of a high correlation coefficient value,

the statistical significance of correlation for the smallest

cluster is smaller than for the larger clusters because of its

size. The result means that detected high correlation is not

so reliable and that it has to be confirmed by further

experiments. As expected, FDG is the most useful bio-

logical property for the general patient population and the

result is in agreement with previously reported research [7].

8 Conclusions

The presented results confirm that novel machine learning

approaches to clustering can indeed be a useful tool for

identifying homogeneous patient subsets in various medi-

cal knowledge discovery tasks. The applied multi-layer

clustering technique and its combination with the gender-

related separation of the population of patients is definitely

not the only possible approach but its results are promising.

Still, significant further research effort in this direction is

necessary. Clusters constructed with the multi-layer clus-

tering are small and six largest clusters together contain

only about 40 % of all patients. In spite of this, the analysis

of the results supports the conclusion that there are

Table 5 Biological and clinical properties that are most significantly different for patients in clusters M1 and M2

Property Average value for

cognitive normal males

Average value

for M2

Average value

for M1

Mann-Whitney z score

M1 versus M2

Biological properties

ICV (*1000) 1577 1774 1479 6.98

Whole brain (*1000) 1109 1167 983 6.12

MidTemp 21629 20127 17930 3.84

Hippocampus 7808 6530 5722 3.47

Fusiform 19593 18457 16672 3.37

Ventricles 35686 64375 47414 2.47

Clinical properties

Abstraction_moca 1.81 1.64 1.14 2.85

Neuropsychiatric Inv.

(impatience)

0.29 0.52 1.78 2.07

Naming_moca 2.92 2.82 2.38 1.78

FAQTV 0.10 1.97 2.62 1.62

Fig. 1 Average values of Alzheimer’s Disease Assessment Scale

(ADAS13) and intracerebral volume (ICV) for all females with

clinical dementia rating score equal zero (black circle), females in

cluster F0 (black triangle), females in cluster F1 (black square), all

males with clinical dementia rating score equal zero (white circle),

males in clusters M0A and M0B (white triangles), and males in

clusters M1 and M2 (white squares)

4 Only the absolute value is important, the negative sign means an

inverse correlation.
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significant gender-specific differences in Alzheimer’s dis-

ease. Additionally, for the male population, two subpopu-

lations with surprising properties have been detected: A

subpopulation of AD patients with increased ICV and

whole brain volumes and a subpopulation of cognitive

normal patients with decreased ICV volume. The result

suggests that segmentation of the AD patient population is

strongly recommended as a preprocessing step for any

analysis aimed at understanding of relations between bio-

logical and clinical properties of AD patients; however,

based on the available data, we still do not know how to

practically perform the segmentation in a non ad-hoc

manner for the majority of patients with cognitive

problems.

In future work, we plan to compare multi-layer clus-

tering with redescription mining and to test if results of

redescription mining might be used for human under-

standable interpretation of clusters obtained by the multi-

layer approach. Regarding medical evaluation, we plan to

test if it is possible to identify M1 and M2 clusters on non-

ADNI patients. The ultimate goal would be to better

understand differences between these two populations.
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